Selective Neuronal Vulnerability to Oxidative Stress in the Brain
نویسندگان
چکیده
Oxidative stress (OS), caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS), plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer's disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV) to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed.
منابع مشابه
Role of Propolis on Oxidative Stress in Fish Brain
Introduction: Cypermethrin causes its neurotoxic effect through voltage-dependent sodium channels and integral protein ATPases in the neuronal membrane. Brain and nerve damage are often associated with low residual level of pesticides. In vitro and in vivo studies have also shown that pesticides cause free radical-mediated tissue damage in brain. Propolis has antioxidant properties. The main ch...
متن کاملThe ameliorative potential of ethanolic extract of propolis on hematotoxicity and structural neuronal damage in hyperthermia-exposed rats
Objective(s): Hyperthermia is one of the most common environmental stressors that affect multi-biological systems in the body including the central nervous system as well as the hematopoietic organs. The objective of the present study was to investigate the protective role of ethanolic extract of propolis (EEP) on some selective stress markers, hematological, biochemical, and histopathological ...
متن کاملThe effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملProtective effect of N-acetylcysteine on Dipentyl phthalate (DPeP) induced cognitive dysfunction and brain oxidative stress in mice
Background: Dipentyl phthalate (DPeP) is a plasticizer compound commonly used in polyvinylchloride plastic to increase their softness and flexibility. They are not bound covalently to the plastic polymers and can therefore leach out into the environment, and have been shown to adversely affect the health of humans and animals. Methods: We investigated the effect of DPeP on the various cognitive...
متن کاملDalteparin as a Novel Therapeutic Agent to Prevent Diabetic Encephalopathy by Targeting Oxidative Stress and Inflammation
Introduction: Hepcidin is the principal modulator of systemic iron metabolism, and its role in the brain has been clarified recently. Studies have shown hepcidin plays an important role for in neuronal iron load and inflammation. This is of significance because neuronal iron load and inflammation are pathophysiological processes that have been highly linked to neurodegeneration. Moreover, the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2010